Features

- High power density (L*W*H = 12.19*12.19*3.75)
- Wide operating temperature -40°C to +90°C at full load
- Efficiency up to 99%, no need for heatsinks

Power Module

- 6-sided shielding
 Thermally and EMI enhanced 25 pad LGA package
- Compact DOSA-compatible footprint
 - Low profile

Description

The RPM-6.0 series is a 6A non-isolated switching regulator power module with a full set of features including adjustable output, sequencing, soft-start control, on/off control, and power good signals. The ultra-compact module has a profile of only 3.75mm, but with an efficiency of up to 99%, the device can operate at full load in ambient temperatures as high as $+90^{\circ}$ C without forced air cooling. The package is complete with 6-sided shielding for optimal EMC performance and excellent heat management.

RECON

EN55032 compliant

Selection (Guide					
Part Number	Input Voltage Range ⁽¹⁾ [VDC]	Output Voltage [VDC]	Vout Adjust Range [VDC]	Output Current max. [A]	Efficiency typ. [%]	Max. Capacitive Load ⁽²⁾ [µF]
RPM3.3-6.0	4 - 15	3.3	0.9 - 6.0	6.0	88 - 97	800
RPM5.0-6.0	4 - 15	5	0.9 - 6.0	6.0	91 - 99	800

Notes:

Note1: Refer to "Input Voltage Range"

Note2: Max. Cap Load is tested at nominal input and full resistive load

Model Numbering

Notes:

Note3: add suffix "-CT" for tube packaging for more details refer to "PACKAGING INFORMATION" without suffix, standard tape and reel packaging

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

BASIC CHAR	ACTERISTICS					
Parameter		Condition	Min.	Тур.	Max.	
Internal Input Filter						capacitor
Input Voltage	Buck mode		3.3Vout 5Vout	4VDC 5.3VDC	12VDC	15VDC
Range 100% duty cycle mode (4)		Vout= Vin - Vdrop	5Vout	4VDC		5.3VDC
Absolute Maximu	im Input Voltage					17VDC
Undervoltage Loo	ckout (UVLO)	DC-DC ON DC-DC OFF		3.8VDC 3.5VDC	3.9VDC 3.6VDC	4VDC 3.7VDC
Input Current		nom. Vin= 12VDC	3.3Vout 5Vout		1.9A 2.8A	
Quiescent Currer	ıt				24µA	
Internal Power Dissipation			3.3Vout 5Vout			2.8W 3.0W

continued on next page

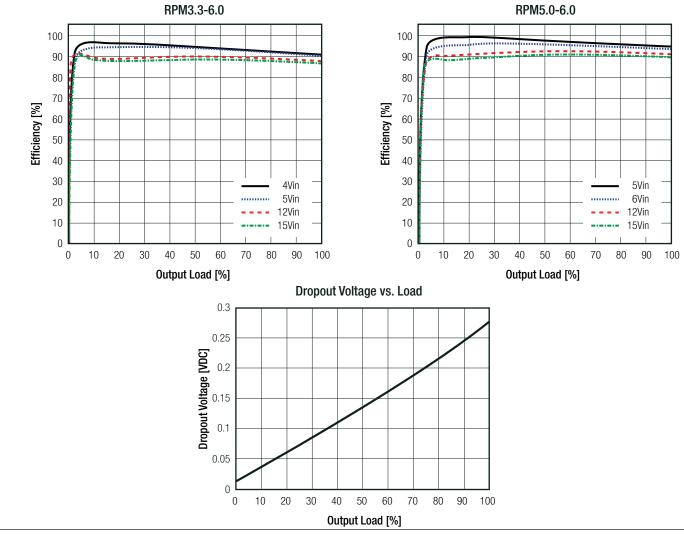
RPM-6.0 Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

Parameter	Condition	Min.	Тур.	Max.
Output Voltage Trimming (5)		0.9VDC		6VDC
Minimum Dropout Voltage (Vdrop) (6)	Vin min. = Vdrop + Vout		50mV/A	
Minimum Load		0%		
Start-up Time	without using soft start function/ power up		1500µs	
Start-up Inne	using CTRL function		1050µs	
Rise-time			900µs	
ON/OFF CTRL	DC-DC ON		Оре	n or 0.9V <v<sub>CTRI<vin< td=""></vin<></v<sub>
UN/OFF CIRL	DC-DC OFF	DC-DC OFF Short c		0.3V <v<sub>CTRL<0.3VDC</v<sub>
Input Current of CTRL Pin	DC-DC OFF		1µA	
Standby Current	DC-DC OFF		15µA	
Internal Operating Frequency			2.4MHz	
Output Ripple and Noise (7)	20MHz BW, 98Ω @ 100MHz		60mVp-p	
Absolute Maximum Canacitive Load	below 1 second start up + $C_{ss} = 3700$ nF			42000µF
Absolute Maximum Capacitive Load	below 1 second start up without softstart mode			800µF

Notes:

Note4: As input approaches output voltage set point, device enters 100% duty cycle mode. In 100% duty cycle

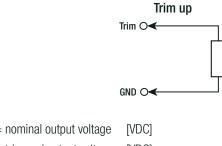

mode, Vout equals Vin minus dropout voltage (see Dropout vs. Load graph)

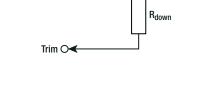
Note5: For more detailed information, please refer to trim table or calculation on page RPM-3

Note6: Required dropout voltage per 1A output current to be within accuracy (see Dropout vs. Load graph)

Note7: Measurements are made with a 22µF MLCC across output (low ESR)

Efficiency vs. Load

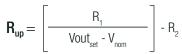

RPM-6.0 Series


Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

OUTPUT VOLTAGE TRIMMING

The RPM-series offers the feature of trimming the output voltage over a range between 0.9V and 6V by using external trim resistors. The values for trim resistors shown in trim tables below are according to standard E96 values; therefore, the specified voltage may slightly vary.

Rup


Trim down

+Vout O

Vout _{nom}	= nominal output voltage	[VDC]
Vout _{set}	= trimmed output voltage	[VDC]
V_{ref}	= reference voltage	[VDC]
$R_{_{up}}$	= trim up resistor	$[\Omega]$
R _{down}	= trim down resistor	$[\Omega]$
R_{1}, R_{2}, R_{3}	= internal resistors	$[\Omega]$

Vout _{nom}	R ₁	R ₂	R ₃	V _{ref}
3.3VDC	$376 k\Omega$	1kΩ	471kΩ	0.81VDC
5VDC	344k Ω	1652	431k Ω	0.01000

Calculation:

Practical Example RPM3.3-6.0:

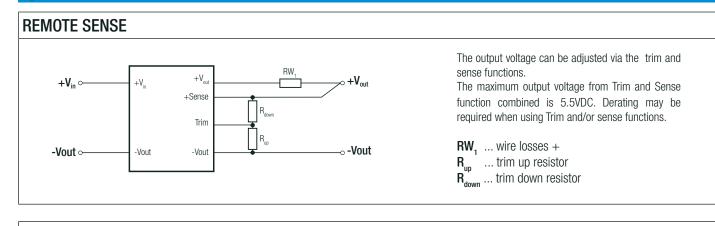
$$\mathbf{R}_{up} = \begin{bmatrix} 376k \\ 4.3 - 3.3 \end{bmatrix} - 1k = \underline{375k\Omega}$$

 \mathbf{R}_{up} according to E96 $\approx \underline{374k\Omega}$

р	(Vout _{set} - V _{ref}) x R ₃
R _{down} =	Vout _{nom} - Vout _{set}

$$\mathbf{R}_{\text{down}} = \left[\frac{(1.8 - 0.81) \times 471 \text{k}}{3.3 - 1.8}\right] = \underline{\mathbf{311k\Omega}}$$

 \mathbf{R}_{down} according to E96 $\approx 309 \text{k}\Omega$


RPM3.3-6.0

Trim up

nini up											
Vout _{set} =	3.5	3.7	3.9	4.1	4.3	4.5	4.7	5.0	5.5	6.0	[VDC]
R_{up} (E96) \approx	1M91	953k	634k	475k	374k	316k	267k	221k	169k	137k	$[\Omega]$
Trim down											
Vout _{set} =	3.0	2.7	2.5	2.2	2.0	1.8	1.5	1.2	1.0	0.9	[VDC]
R_{down} (E96) \approx	3M40	1M47	1M	590k	432k	309k	182k	86k6	39k2	17k4	[Ω]
RPM5.0-6.0 Trim up)										
Vout _{set} =	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6.0	[VDC]
R _{up} (E96) ≈	3M32	1M69	1M15	866k	681k	576k	487k	422k	383k	340k	[Ω]
Trim down											
Vout _{set} =	4.5	4.0	3.5	3.3	2.5	1.8	1.5	1.2	1.0	0.9	[VDC]
R_{down} (E96) \approx	3M16	1M37	768k	634k	294k	133k	84k5	44k2	20k5	9k53	[Ω]

RPM-6.0 Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

POSITIVE TO NEGATIVE 0V ------- OV \mathbf{C}_{1} and \mathbf{C}_{2} may be added to reduced +V_{in} +V_{in} ~ +V____ ripple and should be fitted close to **RPM-6.0** the converter pins. GND C₂ **C**1 -**○ -V**_{out} Notes: Note8: RECOM Power Modules can also be used to convert a positive voltag into a negative voltage. Parameters such as maximum Vin, efficiency and maximum operating temperature are reduced. Please contact RECOM for further details.

REGULATIONS							
Parameter	Condition		Valu				
Output Accuracy			±3.0% ma				
Line Regulation	low line to high line, full load	0.5% typ. /	/ ±3.0% ma				
Load Regulation	0% to 100% load	1.0% typ	. / 3.0% ma				
Soft-Start Time	refer to soft-start capac	citor calculatio					
	100% - 10% load step		200mV ma				
Transient Response	recovery time		6ms ty				
	25% load step change		150mV ma				
	recovery time		500µs typ				
	n to GND. The following equation is used to calco [nF]	current source charges a soft-start capacitor which late the soft-start capacitor: $\mathbf{C}_{ss} = \frac{t_{ss} \times I_{ss}}{1.25V} - n \times 3.3nF$					
Note: there is a 3.3nF internal soft-start ca current sources in the modules which leads	• •	Image:	e [µs] Max.				

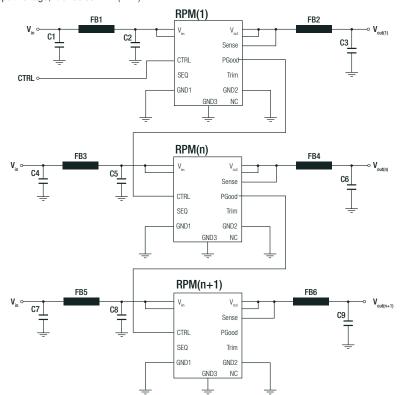
continued on next page

4.5

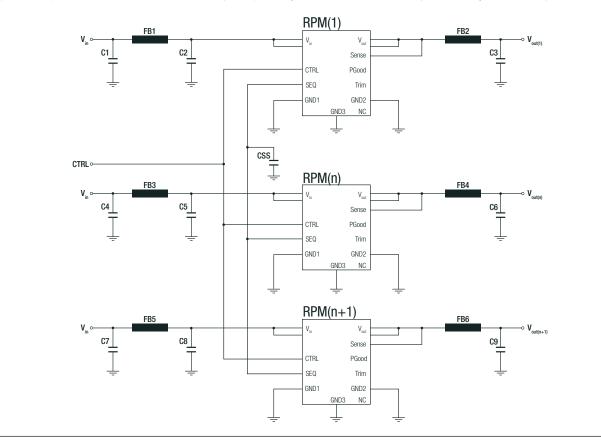
5.0

750

5.5


825

920


RPM-6.0 Series

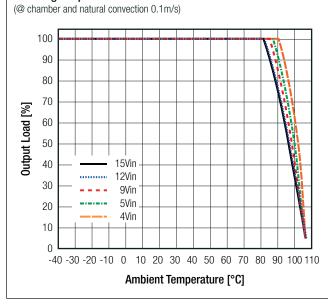
Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

To sequence multiple power module start-up times the power good (PGood) pin and the CTRL pin may be used. In below schematic, the RPM(n) starts after RPM(1) reaches its set output voltage and the power good signal is set to high which then enables RPM(n). After RPM(n) reaches its set output voltage, it enables RPM(n+1).

To sequence multiple converters to start at the same time (set output voltage is reached at the same time), the following schematic may be used:

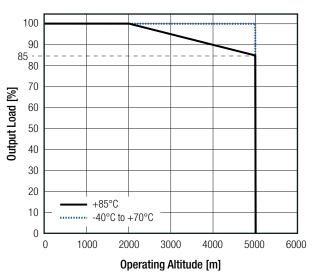
RPM-6.0 Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)


PROTECTIONS			
Parameter	Conc	lition	Value
Short Circuit Protection (SCP)	501	mΩ	hiccup mode, automatic recovery
Short Circuit Input Current	without soft	-start mode	150mA typ.
Over Current Protection (OCP)	with soft-s	start mode	110% - 115%, hiccup mode
Over Temperature Protection (OTP)	case temperature (measured on tc point)	DC-DC OFF DC-DC ON	110°C, auto restart after cool down 100°C typ.

ENVIRONMENTAL			
Parameter	Condition	Value	
Operating Temperature Range (9)	@ natural convection 0.1m/s (refer to derating graph)	-40°C to +85°C	
Maximum Case Temperature	measured on tc point (see dimension drawing)	+110°C	
Temperature Coefficient	@ +65°C Tamb		0.02%/K
Thermal Impedance (9)	0.1m/s, horizontal (Tcase to Tamb)		8K/W
Operating Altitude	with derating @ natural convection 0.1m/s (refer to altitude vs. I	5000m	
Operating Humidity	non-condensing	5% - 95% RH max.	
	MIL-STD-810G, Method 516.6, Procedure I		40g, 11ms, saw-tooth, 3 shocks ± per axis 3 axis; unit is operating
Shock	MIL-STD-810G, Method 516.6, Procedure IV	drop on 50mm plywood on concrete 26 times from 1 meter	
Temperature Cycling	MIL-STD-883F, Method 1010, Condition A		powered -50°C to +85°C, 300 cycles
Random Vibration	MIL-STD-810G, Method 514.6, Procedure I, Category 2	STD-810G, Method 514.6, Procedure I, Category 24	
MTBF	according to MIL-HDBK-217F, G.B. @ full load	+25°C +85°C	1800 x 10 ³ hours 400 x 10 ³ hours

Notes:


Note9: tested with a eurocard 160x100mm 70µm copper, 4 layer

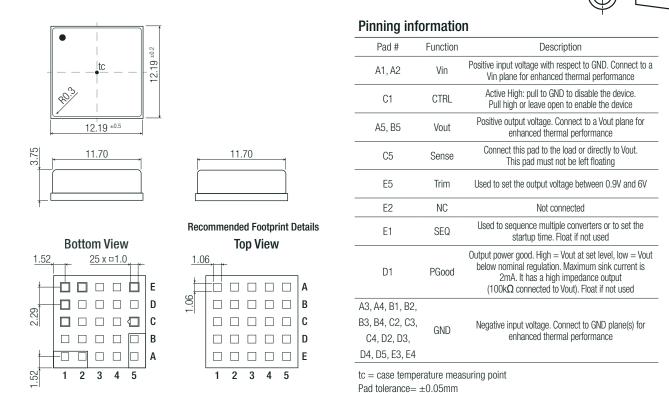
Derating Graph ⁽⁹⁾

Operating Altitude vs Load

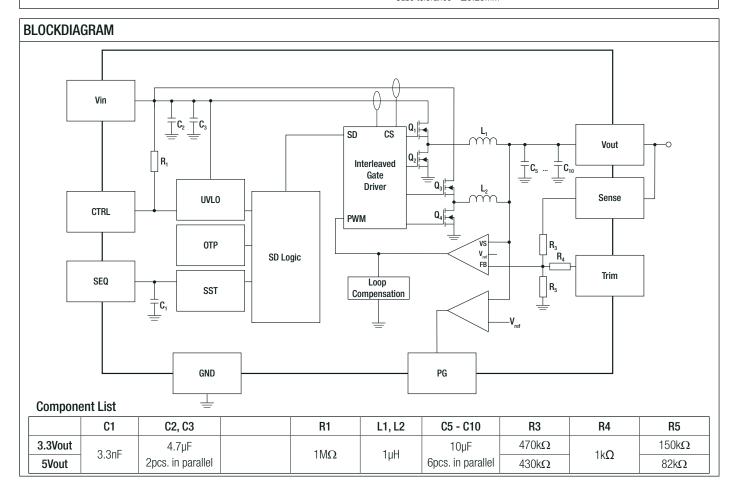
(@ chamber and natural convection 0.1m/s)

RPM-6.0 Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)


ertificate Type (Sat	fety)				Report / File Number	Standard
idio/video, informatior		ion technology e	quipment. Safety	requirements	designed to meet	EN62368-
HS 2+					-	RoHS 2011/65/EU + AM2015/863
MC Compliance					Condition	Standard / Criterio
ectromagnetic compa	tibility of multimed	lia equipment - e	mission requiren	nents	with external components (see filter suggestions below)	EN55032, Class A and I
EMC filtering sugg	estion accordi	ng to EN55032	2			
				Vin CTRL SEQ GND1	V _{out} Sense PG Trim GND2 ND3 NC	
Component List		11		-		
C1	C2 ⁽¹⁰⁾	FB1				
10µF 25V X7R	10µF 25V X7R	WE ref: 742792510				
EMC filtering sugg	V _{in} C1	rg to EN55032 FB1 Cz		r'n V _{ot} Sense ITRL PG EQ Trim ND1 GND2 GND3 NC ⊥	FB2	V _{out} 3
Component List	Class B C2 ⁽¹⁰⁾	FB1	FB2	C3		
01	02.57			03	Notes:	
10µF 25V X7R	10µF 25V X7R	WE ref:	WE ref:	22µF 10V 7XR		required below 10V input voltage

Parameter	Туре	Value
	Case	meta
Material	PCB	FR4, (UL94 V-0)
	solder pads	copper with electrolytic nickel-gold
Dimension (LxWxH)		12.19 x 12.19 x 3.75mm
Weight		1.1g typ.


RPM-6.0 Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

Dimension Drawing (mm)

Case tolerance= ± 0.05 mm

RPM-6.0 Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

PACKAGING INFORMATION

rachading ini chinarion		
Parameter	Туре	Value
Packaging Dimension (LxWxH)	tape and reel	330.2 x 330.2 x 30.4mm
	tape and reel (carton)	365.0 x 365.0 x 55.0mm
	tube ("-CT")	530.0 x 30.3 x 19.2mm
Packaging Quantity	tape and reel	500pcs
	tube ("-CT")	30pcs
Tape Width		24mm
Storage Temperature Range		-55°C to +125°C
Storage Humidity	non-condensing	95% RH max.

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.