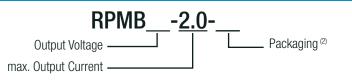
Features

- 36V 2A SMD Power Module
- High power density in 12.2x12.2x3.75mm case
- -40°C to +100°C with derating, convection cooled

Power **Module**

- Efficiency up to 94% 6-sided shielding
- Thermally enhanced 25 pad LGA package (DOSA conform)

Description


The RPMB-2.0 series is a 2A non-isolated SMD switching regulator power module with up to 36V input voltage. Despite its compact LGA footprint and low profile (12.2x12.2x3.75mm), it offers a full set of features including adjustable output from 1V up to 24V, on/off control, sense and power good output signals. With an efficiency of up to 94% which remains nearly constant over a 5% to 100% load range, the device can operate at ambient temperatures as high as +100°C without forced air cooling. The package is complete with 6-sided shielding for optimal EMC performance and excellent heat management. The fully protected module (UVLO, SCP, OCP, OTP) can drive high capacitive loads of up to 0.2F.

Selection Guide						
Part Number	Input Voltage Range [VDC]	Output Voltage [VDC]	Vout Adjust Range [VDC]	Output Current max. [A]	Efficiency typ. [%]	Max Capacitive typ. Load ⁽¹⁾ [µF]
RPMB3.3-2.0	4-36	3.3	1-9	2.0	84	200000
RPMB5.0-2.0	5.5-36	5	1-9	2.0	88	200000
RPMB12-2.0	12.8-36	12	9-24	2.0	93	10000
RPMB15-2.0	16-36	15	9-24	2.0	94	8000

Notes:

Note1: Max. Capacitive Load is tested at nominal input, nominal output, and full resistive load, below 1 second start-up

Model Numbering

Notes:

Note2: Add suffix "-CT" for tube packaging; for more details refer to "PACKAGING INFORMATION" without suffix, standard tape and reel packaging

BASIC CHARACTERISTICS					
Parameter	Conditi	on	Min.	Тур.	Max.
Internal Input Filter					capacitor
Input Voltage Range (4)	3.3Vol 5.0Vol 12Vou 15Vou	it t	4VDC 5.5VDC 12.8VDC 16VDC	24VDC (nominal)	36VDC
Absolute Maximum Input Voltage					38VDC
Input Current	nom. Vin= 24VDC	3.3Vout 5.0Vout 12Vout 15Vout		0.3A 0.5A 1A 1.3A	

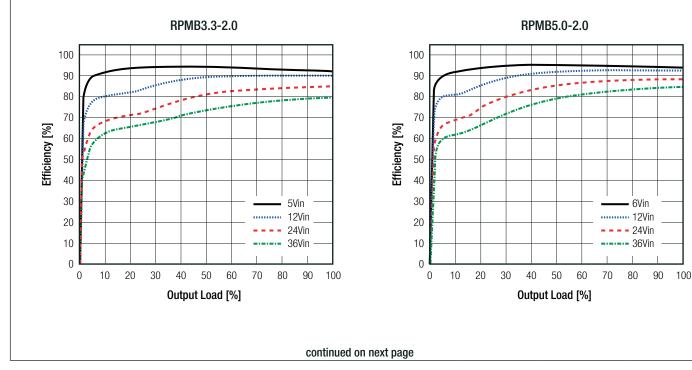
Notes:

Note3: 4.7µF/50V/X7R input cap required

RPMB-2.0

RECOM DC/DC Converter

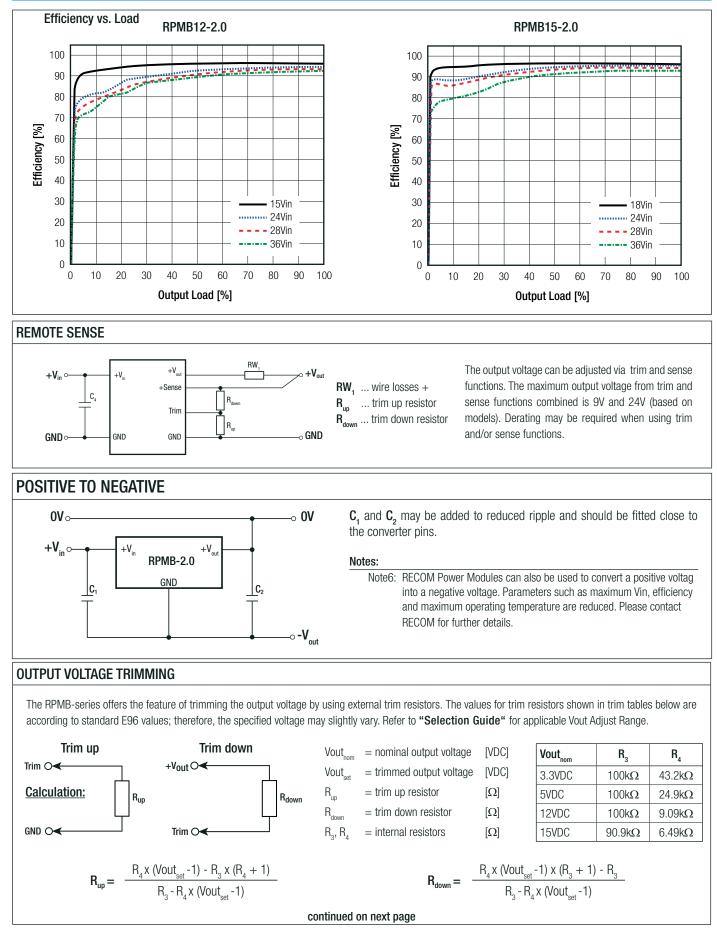
RPMB-2.0 Series


Specifications (@ Ta= 25°C, nom. Vin= 24VDC, full load, with input cap ⁽³⁾, after warm-up unless otherwise stated)

Parameter	Cond	dition		Min.	Тур.	Max.
		3.3	Vout		30µA	
Quiescent Current	nom. Vin= 24VDC	5.0	Vout		36µA	
	110111. VIII= 24VDC	12	/out		70µA	
		15Vout			140µA	
		3.3	Vout		1.3W	
latera I Deven Dissis stier		5.0	Vout		1.4W	
Internal Power Dissipation	nom. Vin= 24VDC	12	/out		1.8W	
		15	/out		1.9W	
Quita ut Valta da Trimmina		TDIMMINO	3.3, 5.0Vout	1VDC 9VDC		9VDC
Output Voltage Trimming	refer to "OUTPUT VOLTAGE	TRIMINING	12, 15Vout			24VDC
Minimum Load				0%		
Start-up Time	pow	er up	r up			
Start-up fille	using CTF	RL function			3.8ms	
Rise-time					900µs	
ON/OFF CTRL	DC-E	DC-DC ON			Open or 1	.26VDC <v<sub>CTRL<vin< td=""></vin<></v<sub>
UN/UFF CIRL	DC-D	DC-DC OFF			hort to GND or -0.3	/DC <v<sub>CTRL<0.3VDC</v<sub>
Input Current of CTRL Pin	DC-D	C OFF			25µA	
Standby Current	DC-D	C OFF			35µA	
Internal Operating Frequency	for all	types			1.4MHz	
		3.3	Vout		20mVp-p	50mVp-p
Output Pipple and Noise (5)	20MHz BW	5.0	Vout		25mVp-p	60mVp-p
Output Ripple and Noise (5)		12	/out		40mVp-p	90mVp-p
		15	/out		50mVp-p	100mVp-p

Notes:

Note4: Below minimum input voltage range, the module enters 98% duty cycle mode. Output voltage will not meet the output accuracy specification Note5: Measurements are made with a 22µF MLCC across output (low ESR)


Efficiency vs. Load

RECOM DC/DC Converter

RPMB-2.0 Series

Specifications (@ Ta= 25°C, nom. Vin= 24VDC, full load, with input cap ⁽³⁾, after warm-up unless otherwise stated)

RPMB-2.0 Series

Specifications (@ Ta= 25°C, nom. Vin= 24VDC, full load, with input cap ⁽³⁾, after warm-up unless otherwise stated)

Practical Example RPMB12-2.0

$$Vout_{cot} = 15VDC$$

 $\mathbf{R}_{up} = \frac{9.09 \, x \, (15 \, \text{-1}) \, \text{-} \, 100 \, x \, (9.09 \, \text{+} \, 1)}{100 \, \text{-} \, 9.09 \, x \, (15 \, \text{-1})}$

 \mathbf{R}_{up} according to E96 $\approx \mathbf{\underline{32k4}\Omega}$

RPMB3.3-2.0

Trim up				
	Vout _{set} =	5	[VDC]	
	R_{up} (E96) \approx	57k6	[Ω]	

Trim down

Vout _{set} =	2.5	1.8	1.5	1.1	[VDC]
R_{down} (E96) \approx	182k	52k3	26k7	3k48	[Ω]

RPMB5.0-2.0

Trim up						
Vout _{set} =	5.5	9	[VDC]			
R_{up} (E96) \approx	205k	23k7	[Ω]			

Trim down

Vout _{set} =	3.3	2.5	[VDC]
R_{down} (E96) \approx	133k	59k	[Ω]

Practical Exam	ple RPMB12-2.0
The state of the s	

 $Vout_{set} = 9VDC$

 $\mathbf{R}_{down} = \frac{9.09 \times (9 - 1) \times (100 + 1) - 100}{100 - 9.09 \times (9 - 1)}$

 \mathbf{R}_{down} according to E96 $\approx 267 k\Omega$

RPMB12-2.0

Irim up						
$Vout_{set} =$	15	24	[VDC]			
R_{up} (E96) \approx	32k4	7k32	[Ω]			

-		
In	ım	do.
- 111		uυ

Trim down						
Vout _{set} =	10	9	[VDC]			
R_{down} (E96) \approx	453k	267k	[Ω]			

RPMB15-2.0

Trim up			
Vout _{set} =	20	24	[VDC]
R_{up} (E96) \approx	16k9	9k09	[Ω]
Trime dayum			

Trim down

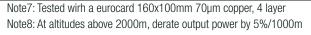
Vout _{set} =	12	9.99	[VDC]
R_{down} (E96) \approx	332k	162k	[Ω]

REGULATIONS			
Parameter	Condition	Value	
Output Accuracy		±1% typ. / ±3% max.	
Line Regulation	low line to high line, full load	0.25±% typ. / ±0.5% max.	
Load Regulation	10% to 100% load	0.05% typ.	
Transient Response	25% load step change	200mV	
	recovery time	100µs	

PROTECTIONS			
Parameter	Condi	tion	Value
Short Circuit Protection (SCP)	less than	50mΩ	hiccup mode, automatic recovery
Over Current Protection (OCP)			120% min.
Over Temperature Protection (OTP)	case temperature (measured on tc point)	DC-DC OFF DC-DC ON	105°C min., auto restart after cool down 100°C typ.

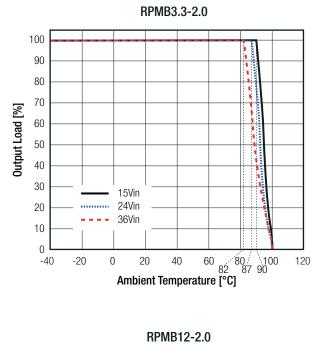
ENVIRONMENTAL				
Condition	Value			
@ natural convection 0.1m/s with derating (refer to "Derating Graph")	-40°C to +100°C			
measured on tc point (refer to "Dimension Drawing")	105°C			
	0.02%/°K			
0.1 m/s, horizontal (T_{CASE} to T_{AME})	12K/W			
with derating @ natural convection 0.1m/s	5000m			
non-condensing	5% - 95% RH max.			
	@ natural convection 0.1m/s with derating (refer to "Derating Graph") measured on tc point (refer to "Dimension Drawing") 0.1m/s, horizontal (T _{CASE} to T _{AME}) with derating @ natural convection 0.1m/s			

continued on next page


RPMB-2.0 Series

RECOM DC/DC Converter

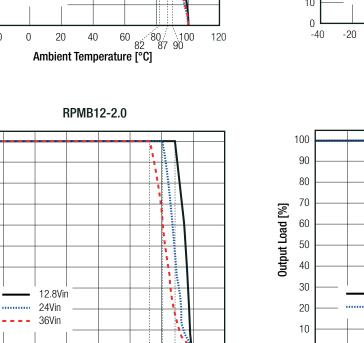
Specifications (@ Ta= 25°C, nom. Vin= 24VDC, full load, with input cap ⁽³⁾, after warm-up unless otherwise stated)


Parameter	Condition		Value
Chaol	MIL-STD-810G, Method 516.6, Procedure I MIL-STD-810G, Method 516.6, Procedure IV		40g, 11ms, saw-tooth, 3 shocks ± per axis 3 axis; unit is operating
Shock			drop on 50mm plywood on concrete 26 times from 1 meter
Random Vibration	MIL-STD-810G, Method 514.6, Procedure I, Category 24		Category 24 - Figure 514.6E-1 - power spectral density = 0.04g ² /Hz at 20Hz -1000Hz; -6dB/octave at 1000Hz - 2000Hz; 60 minutes x 3 axis; unit is operating during tests
MTBF	according to MIL-HDBK-217F, G.B. @ full load +25°C max. T _{AMB}		2.462 x 10 ³ hours 984 x 10 ³ hours

Notes:

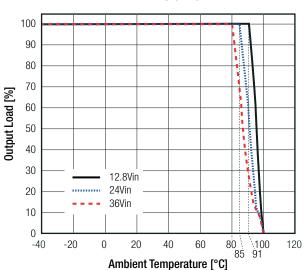
Derating Graph⁽⁷⁾

(@ chamber and natural convection 0.1m/s, @ 24Vin)

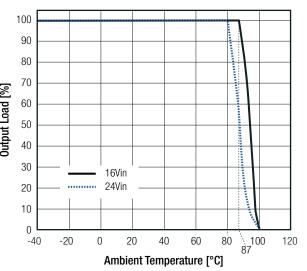


20

40


Ambient Temperature [°C]

60



80 100 81 89

100

90

80

70

60

50 40

30

20

10

0

-40

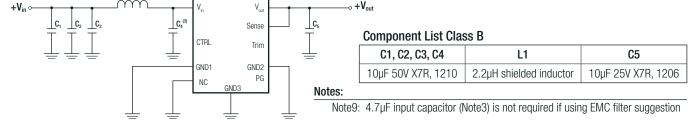
-20

0

Output Load [%]

120

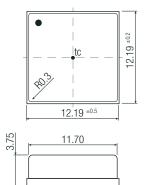
RECON **DC/DC** Converter

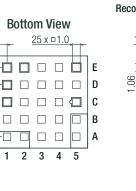

RPMB-2.0

Series

Specifications (@ Ta= 25°C, nom. Vin= 24VDC, full load, with input cap ⁽³⁾, after warm-up unless otherwise stated)

SAFETY AND CERTIFICATIONS


Certificate Type (Safety)	Report / File Number	Standard
RoHS2		RoHS 2011/65/EU + AM2015/863
EMC Compliance	Condition	Standard / Criterion
Electromagnetic compatibility of multimedia equipment - emission requirements (9)	with external components (see filter suggestions below)	EN55032, Class B
EMC filtering suggestion according to EN55032		
$+\mathbf{V}_{in} \circ \underbrace{\mathbf{V}_{in}}_{\mathbf{V}_{in}} \underbrace{\mathbf{V}_{in}}_{\mathbf{V}_{in}} \underbrace{\mathbf{V}_{out}}_{\mathbf{V}_{out}} \underbrace{\mathbf{V}_{out}} \underbrace{\mathbf{V}_{out}}_{\mathbf{V}_{out}} \underbrace{\mathbf{V}_{out}} \underbrace{\mathbf{V}_{ou$		


DIMENSION AND PHYSICAL CHARACTERISTICS

Parameter	Туре	Value
	case	metal
Material	PCB	FR4, (UL94 V-0)
	solder pads	copper with electrolytic nickel-gold
Dimension (LxWxH)		12.19 x 12.19 x 3.75mm
Weight		1.1g typ.

Dimension Drawing (mm)

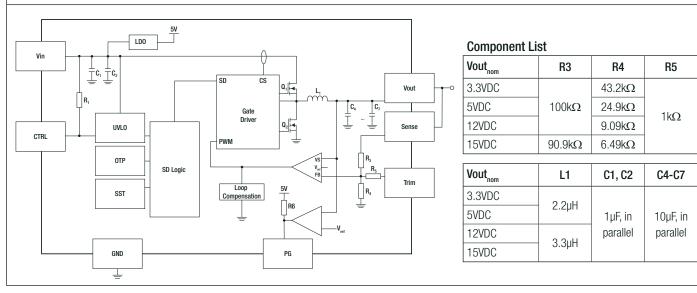
commended Footprint Details Top View						
1.06						A B C D
	1	2	3	4	5	E

nning info	ormation		
Pad #	Function	Description	
A1, A2	Vin	Positive input voltage with respect to GND. Connect to a Vin plane for enhanced thermal performance	
C1	CTRL	Active High: pull to GND to disable the device. Pull high or leave open to enable the device	
A5, B5	Vout	Positive output voltage. Connect to a Vout plane for enhanced thermal performance	
C5	Sense	Connect this pad to the load or directly to Vout. This pad must not be left floating	
E5	Trim	Used to set the output voltage between 1V and 24V, leave open if not used	
E2	NC	Not connected, leave open or connect to GND	
E1	NC	Not connected, leave open or connect to GND	
D1	PGood	Output power good. HIGH = power OK, LOW = power bad. PG pulls low when CTRL = LOW. PG HIGH when VOUT is between 95% and 107% of nominal (VOUT rising) or when between 105% and 93% (VOUT falling) of nominal - typical values. PG delay is typically 110us (\pm 50%). Maximum sink current is 5mA. Open drain output internally tied to 5V (typical) reference through 100k Ω resistor. Float if not used.	
others	GND	Negative input voltage. Connect to GND plane(s) for enhanced thermal performance	

Pad tolerance= ±0.05mm Case tolerance= ± 0.25 mm

1.52

2.29


52

RECOM DC/DC Converter

RPMB-2.0 Series

Specifications (@ Ta= 25°C, nom. Vin= 24VDC, full load, with input cap ⁽³⁾, after warm-up unless otherwise stated)

BLOCKDIAGRAM

PACKAGING INFORMATION			
Parameter	Туре	Value	
	tape and reel	330.2 x 330.2 x 30.4mm	
Packaging Dimension (LxWxH)	tape and reel (carton)	365.0 x 365.0 x 55.0mm	
	tube ("-CT")	530.0 x 30.3 x 19.2mm	
Paakaging Quantity	tape and reel	500pcs	
Packaging Quantity	tube ("-CT")	30pcs	
Tape Width		24mm	
Storage Temperature Range		-55°C to +125°C	
Storage Humidity	non-condensing	95% RH max.	

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.